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PREFACE

Imagine driving home in a fuel cell car with nothing but pure water dripping from the
tailpipe. Imagine a laptop computer that runs for 30 hours on a single charge. Imagine a
world where air pollution emissions are a fraction of that from present-day automobiles and
power plants. These dreams motivate today’s fuel cell research. While some dreams (like
cities chock-full of ultra-low-emission fuel cell cars) may be distant, others (like a 30-hour
fuel cell laptop) may be closer than you think.

By taking fuel cells from the dream world to the real world, this book teaches you
the science behind the technology. This book focuses on the questions “how” and “why.”
Inside you will fnd straightforward descriptions of how fuel cells work, why they offer
the potential for high effciency, and how their unique advantages can best be used.
Emphasis is placed on the fundamental scientifc principles that govern fuel cell operation.
These principles remain constant and universally applicable, regardless of fuel cell type
or technology.

Following this philosophy, the frst part, “Fuel Cell Principles,” is devoted to basic fuel
cell physics. Illustrated diagrams, examples, text boxes, and homework questions are all
designed to impart a unifed, intuitive understanding of fuel cells. Of course, no treatment
of fuel cells is complete without at least a brief discussion of the practical aspects of fuel
cell technology. This is the aim of the second part of the book, “Fuel Cell Technology.”
Informative diagrams, tables, and examples provide an engaging review of the major fuel
cell technologies. In this half of the book, you will learn how to select the right fuel cell
for a given application and how to design a complete system. Finally, you will learn how
to assess the potential environmental impact of fuel cell technology.

xi



xii PREFACE

Comments or questions? Suggestions for improving the book? Found a typo, think our
explanations could be improved, want to make a suggestion about other important con-
cepts to discuss, or have we got it all wrong? Please send us your feedback by emailing us
at fcf3@yahoogroups.com. We will take your suggestions into consideration for the next
edition. Our website http://groups.yahoo.com/group/fcf3 posts these discussions, fiers for
the book, and additional educational materials. Thank you.
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CHAPTER 1

INTRODUCTION

You are about to embark on a journey into the world of fuel cells and electrochemistry. This
chapter will act as a roadmap for your travels, setting the stage for the rest of the book. In
broad terms, this chapter will acquaint you with fuel cells: what they are, how they work,
and what signifcant advantages and disadvantages they present. From this starting point,
the subsequent chapters will lead you onward in your journey as you acquire a fundamental
understanding of fuel cell principles.

1.1 WHAT IS A FUEL CELL?

You can think of a fuel cell as a “factory” that takes fuel as input and produces electricity
as output. (See Figure 1.1.) Like a factory, a fuel cell will continue to churn out product
(electricity) as long as raw material (fuel) is supplied. This is the key difference between a
fuel cell and a battery. While both rely on electrochemistry to work their magic, a fuel cell
is not consumed when it produces electricity. It is really a factory, a shell, which transforms
the chemical energy stored in a fuel into electrical energy.

Viewed this way, combustion engines are also “chemical factories.” Combustion engines
also take the chemical energy stored in a fuel and transform it into useful mechanical or
electrical energy. So what is the difference between a combustion engine and a fuel cell?

In a conventional combustion engine, fuel is burned, releasing heat. Consider the sim-
plest example, the combustion of hydrogen:

H2 +
1
2
O2 ⇌ H2O (1.1)

3
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4 INTRODUCTION

Electricity

Fuel cell
H2O(1/g)O2(g)

H2(g)

Figure 1.1. General concept of a (H2–O2) fuel cell.

On the molecular scale, collisions between hydrogen molecules and oxygen molecules
result in a reaction. The hydrogen molecules are oxidized, producing water and releasing
heat. Specifcally, at the atomic scale, in amatter of picoseconds, hydrogen–hydrogen bonds
and oxygen–oxygen bonds are broken, while hydrogen–oxygen bonds are formed. These
bonds are broken and formed by the transfer of electrons between themolecules. The energy
of the product water bonding confguration is lower than the bonding confgurations of the
initial hydrogen and oxygen gases. This energy difference is released as heat. Although the
energy difference between the initial and fnal states occurs by a reconfguration of electrons
as they move from one bonding state to another, this energy is recoverable only as heat
because the bonding reconfguration occurs in picoseconds at an intimate, subatomic scale.
(See Figure 1.2.) To produce electricity, this heat energy must be converted into mechanical
energy, and then the mechanical energy must be converted into electrical energy. Going
through all these steps is potentially complex and ineffcient.

Consider an alternative solution: to produce electricity directly from the chemical reac-
tion by somehow harnessing the electrons as they move from high-energy reactant bonds

Reaction progress

P
ot
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tia

l e
ne

rg
y

Products (H2O)

Reactants (H2/O2)

1

32 41

4

3

2

H2
H2

H2O

H2O
O2

Figure 1.2. Schematic of H2–O2 combustion reaction. (Arrows indicate the relative motion
of the molecules participating in the reaction.) Starting with the reactant H2–O2 gases (1),
hydrogen–hydrogen and oxygen–oxygen bondsmust frst be broken, requiring energy input (2) before
hydrogen–oxygen bonds are formed, leading to energy output (3, 4).



WHAT IS A FUEL CELL? 5

to low-energy product bonds. In fact, this is exactly what a fuel cell does. But the question
is, how do we harness electrons that reconfgure in picoseconds at subatomic length scales?
The answer is to spatially separate the hydrogen and oxygen reactants so that the electron
transfer necessary to complete the bonding reconfguration occurs over a greatly extended
length scale. Then, as the electrons move from the fuel species to the oxidant species, they
can be harnessed as an electrical current.

BONDS AND ENERGY

Atoms are social creatures. They almost always prefer to be together instead of alone.
When atoms come together, they form bonds, lowering their total energy. Figure 1.3
shows a typical energy–distance curve for a hydrogen–hydrogen bond. When the hydro-
gen atoms are far apart from one another (1), no bond exists and the system has high
energy. As the hydrogen atoms approach one another, the system energy is lowered until
the most stable bonding confguration (2) is reached. Further overlap between the atoms
is energetically unfavorable because the repulsive forces between the nuclei begin to
dominate (3). Remember:

• Energy is released when a bond is formed.

• Energy is absorbed when a bond is broken.

For a reaction to result in a net release of energy, the energy released by the formation
of the product bonds must be more than the energy absorbed to break the reactant bonds.

1
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Figure 1.3. Bonding energy versus internuclear separation for hydrogen–hydrogen bond: (1) no
bond exists; (2) most stable bonding confguration; (3) further overlap unfavorable due to inter-
nuclear repulsion.



6 INTRODUCTION

1.2 A SIMPLE FUEL CELL

In a fuel cell, the hydrogen combustion reaction is split into two electrochemical half reac-
tions:

H2 ⇌ 2H+ + 2e− (1.2)

1
2
O2 + 2H+ + 2e− ⇌ H2O (1.3)

By spatially separating these reactions, the electrons transferred from the fuel are forced
to fow through an external circuit (thus constituting an electric current) and do useful work
before they can complete the reaction.

Spatial separation is accomplished by employing an electrolyte. An electrolyte is a mate-
rial that allows ions (charged atoms) to fow but not electrons. At a minimum, a fuel cell
must possess two electrodes, where the two electrochemical half reactions occur, separated
by an electrolyte.

Figure 1.4 shows an example of an extremely simple H2–O2 fuel cell. This fuel cell
consists of two platinum electrodes dipped into sulfuric acid (an aqueous acid electrolyte).
Hydrogen gas, bubbled across the left electrode, is split into protons (H+) and electrons
following Equation 1.2. The protons can fow through the electrolyte (the sulfuric acid is like
a “sea” of H+), but the electrons cannot. Instead, the electrons fow from left to right through
a piece of wire that connects the two platinum electrodes. Note that the resulting current,
as it is traditionally defned, is in the opposite direction. When the electrons reach the right
electrode, they recombinewith protons and bubbling oxygen gas to producewater following
Equation 1.3. If a load (e.g., a light bulb) is introduced along the path of the electrons, the
fowing electrons will provide power to the load, causing the light bulb to glow. Our fuel cell

H2 O2

e–

H+

Figure 1.4. A simple fuel cell.
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is producing electricity! The frst fuel cell, invented by William Grove in 1839, probably
looked a lot like the one discussed here.

ENERGY, POWER, ENERGY DENSITY, AND POWER DENSITY

To understand how a fuel cell compares to a combustion engine or a battery, several
quantitative metrics, or fgures of merit, are required. The most common fgures of merit
used to compare energy conversion systems are power density and energy density.

To understand energy density and power density, you frst need to understand the
difference between energy and power:

Energy is defned as the ability to do work. Energy is usually measured in joules (J) or
calories (cal).

Power is defned as the rate at which energy is expended or produced. In other words,
power represents the intensity of energy use or production. Power is a rate. The typical
unit of power, the watt (W), represents the amount of energy used or produced per
second (1 W = 1 J∕s).

From the above discussion, it is obvious that energy is the product of power and time:

Energy = power × time (1.4)

Although the International System of Units (SI) uses the joule as the unit of energy, you
will often see energy expressed in terms of watt-hours (Wh) or kilowatt-hours (kWh).
These units arise when the units of power (e.g., watts) are multiplied by a length of time
(e.g., hours) as in Equation 1.4. Obviously, watt-hours can be converted to joules or vice
versa using simple arithmetic:

1Wh × 3600s∕h × 1 (J∕s)∕W = 3600J (1.5)

Refer to Appendix A for a list of some of the more common unit conversions for energy
and power. For portable fuel cells and other mobile energy conversion devices, power
density and energy density are more important than power and energy because they
provide information about how big a system needs to be to deliver a certain amount
of energy or power. Power density refers to the amount of power that can be produced
by a device per unit mass or volume. Energy density refers to the total energy capacity
available to the system per unit mass or volume.

Volumetric power density is the amount of power that can be supplied by a device per
unit volume. Typical units are W∕cm3 or kW∕m3.

Gravimetric power density (or specifc power) is the amount of power that can be sup-
plied by a device per unit mass. Typical units are W/g or kW/kg.
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Volumetric energy density is the amount of energy that is available to a device per unit
volume. Typical units are Wh∕cm3 or kWh∕m3.

Gravimetric energy density (or specifc energy) is the amount of energy that is available
to a device per unit mass. Typical units are Wh∕g or kWh∕kg.

1.3 FUEL CELL ADVANTAGES

Because fuel cells are “factories” that produce electricity as long as they are supplied with
fuel, they share some characteristics in common with combustion engines. Because fuel

(a)

1
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Fuel cell, battery

Combustion engine
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energy

Mechanical
energy
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energy

Electrical
energy
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combustion

engine

Work
out

Work
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(b)

Figure 1.5. Schematic comparison of fuel cells, batteries, and combustion engines. (a) Fuel cells
and batteries produce electricity directly from chemical energy. In contrast, combustion engines frst
convert chemical energy into heat, then mechanical energy, and fnally electricity (alternatively, the
mechanical energy can sometimes be used directly). (b) In batteries, power and capacity are typically
intertwined—the battery is both the energy storage and the energy conversion device. In contrast, fuel
cells and combustion engines allow independent scaling between power (determined by the fuel cell
or engine size) and capacity (determined by the fuel tank size).
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cells are electrochemical energy conversion devices that rely on electrochemistry to work
their magic, they share some characteristics in common with primary batteries. In fact, fuel
cells combine many of the advantages of both engines and batteries.

Since fuel cells produce electricity directly from chemical energy, they are often far more
effcient than combustion engines. Fuel cells can be all solid state and mechanically ideal,
meaning no moving parts. This yields the potential for highly reliable and long-lasting
systems. A lack of moving parts also means that fuel cells are silent. Also, undesirable
products such as NOx, SOx, and particulate emissions are virtually zero.

Unlike batteries, fuel cells allow easy independent scaling between power (determined
by the fuel cell size) and capacity (determined by the fuel reservoir size). In batteries, power
and capacity are often convoluted. Batteries scale poorly at large sizes, whereas fuel cells
scale well from the 1-W range (cell phone) to the megawatt range (power plant). Fuel cells
offer potentially higher energy densities than batteries and can be quickly recharged by refu-
eling, whereas batteries must be thrown away or plugged in for a time-consuming recharge.
Figure 1.5 schematically illustrates the similarities and differences between fuel cells, bat-
teries, and combustion engines.

FUEL CELLS VERSUS SOLAR CELLS VERSUS BATTERIES

Fuel cells, solar cells, and batteries all produce electrical power by converting either
chemical energy (fuel cells, batteries) or solar energy (solar cells) to a direct-current
(DC) fow of electricity. The key features of these three devices are compared in
Figure 1.6 using the analogy of buckets flled with water. In all three devices, the
electrical output power is determined by the operating voltage (the height of water
in the bucket) and current density (the amount of water fowing out the spigot at the
bottom of the bucket).

Fuel cells and solar cells can be viewed as “open” thermodynamic systems that oper-
ate at a thermodynamic steady state. In other words, the operating voltage of a fuel cell
(or a solar cell) remains constant in time so long as it is continually supplied with fuel
(or photons) from an external source. In Figure 1.6, this is shown by the fact that the
water in the fuel cell and solar cell buckets is continually replenished from the top at the
same rate that it fows out the spigot in the bottom, resulting in a constant water level
(constant operating voltage).

In contrast, most batteries are closed thermodynamic systems that contain a fnite and
exhaustible internal supply of chemical energy (reactants). As these reactants deplete,
the voltage of the battery generally decreases over time. In Figure 1.6, this is shown by
the fact that the water in the battery bucket is not replenished, resulting in a decreasing
water level (decreasing operating voltage) with time as the battery is discharged. It is
important to point out that battery voltage does not decrease linearly during discharge.
During discharge, batteries pass through voltage plateaus where the voltage remains
more or less constant for a signifcant part of the discharge cycle. This phenomenon is
captured by the strange shape of the battery “bucket.”
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Figure 1.6. Fuel cells versus solar cells versus batteries. This schematic diagram provides another way to look at the similarities and differences
between three common energy conversion technologies that provide electricity as an output.
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In addition to the thermodynamic operating differences between fuel cells, solar cells,
and batteries, Figure 1.6 also shows that fuel cells typically operate at much higher cur-
rent densities than solar cells or batteries. This characteristic places great importance on
using low-resistance materials in fuel cells to minimize ohmic (“IR”) losses. We will
learn more about minimizing ohmic losses in Chapter 4 of this textbook!

1.4 FUEL CELL DISADVANTAGES

While fuel cells present intriguing advantages, they also possess some serious disadvan-
tages. Cost represents a major barrier to fuel cell implementation. Because of prohibitive
costs, fuel cell technology is currently only economically competitive in a few highly spe-
cialized applications (e.g., onboard the Space Shuttle orbiter). Power density is another
signifcant limitation. Power density expresses how much power a fuel cell can produce
per unit volume (volumetric power density) or per unit mass (gravimetric power density).
Although fuel cell power densities have improved dramatically over the past decades, fur-
ther improvements are required if fuel cells are to compete in portable and automotive
applications. Combustion engines and batteries generally outperform fuel cells on a volu-
metric power density basis; on a gravimetric power density basis, the race is much closer.
(See Figure 1.7.)

Fuel availability and storage pose further problems. Fuel cells work best on hydrogen
gas, a fuel that is not widely available, has a low volumetric energy density, and is diffcult
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Figure 1.8. Energy density comparison of selected fuels (lower heating value).

to store. (See Figure 1.8.) Alternative fuels (e.g., gasoline, methanol, formic acid) are dif-
fcult to use directly and usually require reforming. These problems can reduce fuel cell
performance and increase the requirements for ancillary equipment. Thus, although gaso-
line looks like an attractive fuel from an energy density standpoint, it is not well suited to
fuel cell use.

Additional fuel cell limitations include operational temperature compatibility concerns,
susceptibility to environmental poisons, and durability under start–stop cycling. These sig-
nifcant disadvantages will not be easy to overcome. Fuel cell adoption will be severely
limited unless technological solutions can be developed to hurdle these barriers.

1.5 FUEL CELL TYPES

There are fve major types of fuel cells, differentiated from one another by their electrolyte:

1. Phosphoric acid fuel cell (PAFC)

2. Polymer electrolyte membrane fuel cell (PEMFC)

3. Alkaline fuel cell (AFC)

4. Molten carbonate fuel cell (MCFC)

5. Solid-oxide fuel cell (SOFC)




